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Diffusion-limited scalar cascades
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We study advection–diffusion of a passive scalar, T , by an incompressible fluid in a
closed vessel bounded by walls impermeable to the fluid. Variations in T are produced
by prescribing a steady non-uniform distribution of T at the boundary. Because there
is no flow through the walls, molecular diffusion, κ , is essential in ‘lifting’ T off
the boundary and into the interior where the velocity field acts to intensify ∇T . We
prove that as κ → 0 (with the fluid velocity fixed) this diffusive lifting is a feeble
source of scalar variance. Consequently the scalar dissipation rate χ – the volume
integral of κ |∇T |2 – vanishes in the limit κ → 0. Thus, in this particular closed-flow
configuration, it is not possible to maintain a constant supply of scalar variance as
κ → 0 and the fundamental premise of scaling theories for passive scalar cascades is
violated.

We also obtain a weaker bound on χ when the transported field is a dynamically
active scalar, such as temperature. This bound applies to the Rayleigh–Bénard
configuration in which T = ±1 on two parallel plates at z = ±h/2. In this case
we show that χ � 3.252 × (κε/νh2)1/3 where ν is the viscosity and ε is the mechanical
energy dissipation per unit mass. Thus, provided that ε and ν/κ are non-zero in the
limit κ → 0, χ might remain non-zero.

1. Introduction
An important process at the heart of many fluid phenomena in the physical and

engineering sciences is the advection and diffusion of a passive scalar. One of the
canonical idealizations of this process is the problem first broached by Zeldovich
(1937), in which the scalar is advected inside a closed container by an incompressible
fluid with an arbitrary velocity field. There is no source or sink of the scalar within
the fluid, and its concentration is maintained in some fixed pattern on parts of the
boundary, whilst other areas of the boundary are impermeable.

The mathematical formulation of Zeldovich’s problem is the advection–diffusion
equation for the scalar field, T (x, t), in a region of volume V:

Tt + u · ∇T = κ∇2T , (1.1)

where κ is molecular diffusivity and u(x, t) is a prescribed smooth velocity field
satisfying ∇ · u = 0. There is no flow through the walls of the domain, and so
n · u = 0, where n is the outward unit normal (but we do not necessarily insist on
the no-slip condition). Some part of the boundary may be insulating, i.e. n · ∇T = 0,
while on the remainder of the boundary T is prescribed. An example solution to this
problem is presented in figure 1, which illustrates the filamentation of the tracer when
κ is small.
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Figure 1. A solution of (1.1) using Solomon & Gollub’s (1988) model of oscillating convection
cells. (The velocity is defined by the streamfunction in (3.1) with α = 3h/2.) The tracer is fixed at
T = +1 on the top plate (z = h/2) and T = −1 on the bottom plate (z = −h/2.) The three panels
show snapshots of T (x, z, t) after transients have subsided for computations with three values of the
Péclet number (102, 103 and 104, top to bottom). The concentration field is twisted into increasingly
sharp filaments that are torn from the boundaries and wrapped around the sweeping cells. Intense
gradients are created in boundary layers and filaments, but over most of the domain, the tracer is
well mixed by the fluid motions.

Zeldovich’s problem applies to many situations in oceanography, meteorology,
astrophysics and engineering, and is a classical setting in which to study ‘passive
scalar turbulence’ (the creation of complicated structure in the scalar field by
fluid motion; e.g. Shraiman & Siggia 2000; Sreenivasan 1991; Warhaft 2000). The
motivating idea here is that when the scalar is supplied at large scales, differential
advection creates increasingly fine length scales so that molecular diffusion ultimately
balances the advective intensification of scalar gradients (cf. figure 1). Obukhov,
Corrsin and Batchelor argued that the link between the large-scale source of scalar
variance and the small-scale sink is a turbulent cascade and dimensional analysis,
much like Kolmogorov’s theory of turbulence, is applicable (e.g. Sreenivasan 1996;
Shraiman & Siggia 2000). The cascade rate,

χ ≡ κ〈|∇T |2〉 , (1.2)

plays a key role in these arguments. In (1.2) the angular brackets denote a volume
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and time average,

〈Z〉 ≡
∫ t∞

0

∫
Z(x, t)

dV

V
dt

t∞
, (1.3)

and t∞ is sufficiently long to remove unsteady fluctuations in T forced by pulsations in
u(x, t). If T is the temperature of the fluid then, within the Boussinesq approximation,
χ is the rate of entropy production.

The fundamental premise of Obukhov’s, Corrsin’s and Batchelor’s theories of
passive scalar cascades is that χ is independent of κ and enters as an external
parameter in the dimensional analysis (Sreenivasan 1996; Shraiman & Siggia 2000).
The main result of the current paper is that

lim
κ→0

χ = 0 , (1.4)

for a fixed velocity field. Thus, the fundamental premise of the standard theory is
violated in Zeldovich’s problem.

2. Comparison functions and some bounds
Our goal is to place limits on the scalar dissipation rate, χ . If we multiply (1.1) by

T and take a 〈〉-average we obtain a useful alternative to the definition in (1.2):

χ = κ

∫ t∞

0

∫
T Tn

dA

V
dt

t∞
. (2.1)

The area integral above is over the boundary of V and Tn ≡ ∇T · n. At first sight,
(2.1) offers some explanation for why the scalar cascade rate should vanish in the
limit κ → 0. However, the limit is not completely trivial, since for complicated velocity
fields one cannot exclude the possibility that scalar gradients at the walls become as
large as κ−1 in the limit.

Because the advection–diffusion equation is linear, we may also normalize the pre-
scribed boundary values of T to lie between +1 and −1. Then, by invoking
the extremum principle for the advection–diffusion equation, the interior values of
T are also constrained by −1 < T (x, t) < 1. The main tools we use in this study are
this extremum principle, together with the concept of a comparison function, C(x).
The comparison function satisfies the same boundary conditions as the scalar (on
the insulating walls Tn = Cn = 0 and on the remainder of the boundary C = T ),
and is chosen to possess some other useful properties, outlined shortly. Because the
prescribed boundary concentration is steady we can restrict ourselves to comparison
functions which are independent of t . Given a comparison function C, we define

χC ≡ κ

∫
CCn

dA

V (2.2)

in analogy with (2.1).

2.1. Zeldovich’s lower bound

Using Green’s first theorem, and the boundary properties of C, one has∫
∇T · ∇C dV =

∫
CCn dA −

∫
T ∇2C dV . (2.3)

The integral identity above implies that

κ〈∇T · ∇C〉 = χC − κ〈T ∇2C〉 . (2.4)
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A simple example of bounding using comparison functions is provided by using (2.4)
to replace the cross-term in κ〈|∇T − ∇C|2〉 � 0. This replacement gives

χ � 2χC − κ〈|∇C|2〉 − 2κ〈T ∇2C〉 . (2.5)

If we now choose the particular comparison function which satisfies ∇2C = 0 in
V then (2.5) becomes χ � χC . In other words, using the conduction solution as a
comparison function we obtain Zeldovich’s result that χ is a minimum when the fluid
is at rest.

2.2. An identity and two inequalities

Using Green’s second theorem one has∫
T ∇2C − C∇2T dV =

∫
CCn − T Tn dA . (2.6)

If we multiply (1.1) by C, take the 〈〉-average, and use (2.6), we obtain the fundamental
identity

χ = χC − 〈T u · ∇C〉 − κ〈T ∇2C〉 . (2.7)

Since only T , and not ∇T , appears on the right-hand side of (2.7) we can invoke the
extremum principle, −1 < T < +1, and extract the maximum value, T = 1, from the
integrals to obtain

Bound A : χ � χC + 〈|u · ∇C|〉 + κ〈|∇2C|〉 . (2.8)

Combining (2.7) with the inequality (2.5) we obtain χ � κ〈|∇C|2〉+2〈T u · ∇C〉. Again
invoking the extremum principle we find the bound

Bound B : χ � κ〈|∇C|2〉 + 2〈|u · ∇C|〉 . (2.9)

2.3. The bound for small κ

Both (2.8) and (2.9) apply for arbitrary values of κ . To prove (1.4) we proceed by
selecting C to be different from zero only in boundary layers which cling to walls of
the vessel. The boundary layer thickness, δ, is much less than the characteristic length
scale V1/3, which ensures that u · ∇C is small over most of the domain (more detail
below). But δ cannot be made too small without promoting the other terms, which
are all explicitly proportional to κ , but involve higher normal derivatives of C. Thus
the optimal value of δ is obtained by making 〈|u · ∇C|〉 the same order of magnitude
as the other terms.

Given that C has a boundary-layer structure, we can make order-of-magnitude
estimates of the terms on the right-hand sides of (2.8) and (2.9). Consider, for
instance, the term 〈|u · ∇C|〉. In the boundary layer, ∇C ∼ δ−1n, where n is the
normal to the boundary. Now u · n is zero on the walls, and increases linearly with
distance from the boundary. Thus, provided that the boundary layer is sufficiently
thin, u · ∇C ∼ u · n/δ ∼ ω where ω is normal derivative of u · n. Since the total
volume of the boundary layer is V2/3δ, the volume average gives 〈|u ·∇C|〉 ∼ ωδ/V1/3.
Analogous rough estimates of the other terms (namely κ〈|∇C|2〉, χC and κ〈|∇2C|〉) in
(2.8) and (2.9) show that these are all of order κ/δ. In summary, both (2.8) and (2.9)
give bounds of the form

χ � V−1/3

[
a1

κ

δ
+ a2ωδ

]
, (2.10)

where a1 and a2 are dimensionless positive constants, depending only on the geometry
of the vessel.
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The terms in square brackets on the right-hand side of (2.10), viewed as a function
of δ, achieve their minimum value at δ =

√
a1κ/a2ω. Evaluating (2.10) at this optimal

δ then gives

χ � 2V−1/3√
a1a2ωκ , (2.11)

and (1.4) follows.
If the velocity field also satisfies the no-slip condition at the wall (as in Ghosh,

Leonard & Wiggins 1998) then the bound can be strengthened. Specifically, inside
the boundary layer, n · u varies quadratically with distance from the wall. In these
circumstances one can show that the optimal boundary layer scale is δ ∝ κ1/3 and
χ < O(κ2/3).

3. An example
A simple example is a fluid confined by two plates at z = ±h/2. On the top plate

we prescribe T = +1 and on the bottom plate T = −1. The domain is periodic in
the x-direction and of length 2πh. We consider a flow field with the streamfunction

ψ(x, z, t) = φ sin(X/h) cos(πz/h) , (3.1)

where X = x + α sin t . The model streamfunction has two parameters, α and φ;
the Péclet number is φ/κ . Our sign convention is (u, w) = (ψz, −ψx). This two-
dimensional flow is a specific case of the model of unsteady convective rolls proposed
by Solomon & Gollub (1988). Provided that α �= 0 this flow chaotically advects tracer
particles.

As comparison functions we consider

C(z) =
sinhµz

sinh(µh/2)
, (3.2)

where µ = 1/δ is varied to determine the tightest bound. To use the inequalities in
(2.8) and (2.9) we first calculate the following properties of (3.2):

χC = 2κh−2m coth(m/2) , κ〈|∇2C|〉 = 2κh−2m tanh(m/4) , (3.3)

κ〈|∇C|2〉 =
κ

h2

m(sinhm + m)

coshm − 1
, (3.4)

where m ≡ µh. The term requiring most work is 〈|u · ∇C|〉 = 〈|w|Cz〉:

〈|wCz|〉 =
4φ

h2

m coth(m/2)

π2 + m2
, (3.5)

which is independent of α.
Substituting the results above into (2.8) and (2.9) gives the bounds

Bound A : χ � 2
κ

h2
m

[
coth

(
m

2

)
+ tanh

(
m

4

)]
+ 4

φ

h2

m coth(m/2)

π2 + m2
, (3.6)

Bound B : χ �
κ

h2

m(sinhm + m)

(coshm − 1)
+ 8

φ

h2

m coth(m/2)

π2 + m2
. (3.7)

Finally, with fixed κ and φ, we minimize these bounds by finding the optimal value
of m (see figure 2). When κ/φ is small the optimal m is O(κ/φ)−1/2 and both (3.6)
and (3.7) reduce to (2.10). If κ/φ becomes large, on the other hand, m approaches
zero and the bounds converge to the conduction solution, χ = 4κ/h2.
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Figure 2. Construction of bounds using C in (3.2). (a) A plot of the upper bound on χ as a
function of m for κ/φ = 0.01, and (b) the optimal m as a function of κ/φ. Shown are computations
for the two bounds A and B in (3.6) and (3.7), the bound from the background method in (A 10),
and the bound in (4.4).
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Figure 3. The bounds on χ , computed from (3.6), (3.7), (A 10), and (4.4), together with some data
points obtained by numerically integrating (1.1). Shown also is the conduction solution (for which
χ = 4κ/h2).

With more effort, a superior bound can be obtained using the Constantin–Doering–
Hopf method of the background field (see the Appendix). This approach gives a third
bound, presented in (A 10), which lowers the constraint on χ by a factor of roughly
2, but offers no improvement over (3.6) and (3.7) in the scaling of the bound at
small or large κ . All of the bounds are summarized in figure 3 and compared with
results obtained by numerically integrating the advection–diffusion equation with
initial condition, T (x, z, 0) = sinh(4z/h)/ sinh(2). (We verified that the precise form
of the initial condition had an insignificant effect on the computed value of χ .)

4. Boundary-layer velocity fields and dynamically active scalars
A key restriction on our earlier results is that u is independent of both κ and C.

Looking back over our estimates, this crucial assumption has enabled us to argue
that as κ → 0, the scale of u near the wall is much greater than the thickness
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of the comparison-function boundary layer. In this section we lift this restriction
and present a bound, weaker than (2.11), but with the important advantage of
encompassing velocity fields with fine-scale structure near the wall. This includes
dynamical problems, in which T is not a passive scalar, and also the possibility that
as κ → 0 the velocity u also forms a comparably sharp boundary layer (for example,
because the Prandtl number is fixed).

We use only bound A in (2.8) and we consider the parallel plate geometry of
§ 3, with T = ±1 on z = ±h/2. Thus the following estimates apply to the standard
Rayleigh–Bénard convection problem in which the temperature T determines the
buoyancy of the fluid. However, a similar approach can be used with more general
boundary conditions on the parallel plates.

As a comparison function, we can again use C(z) in (3.2). Some of the integrals
we need are in (3.3). The difficult term is always 〈|u · ∇C|〉 = 〈|w|Cz〉. To bound
〈|w|Cz〉, without making restrictive assumptions about w, we invoke Howard’s (1972)
Lemma 1 that

w2 �

(
h2

4
− z2

) ∫ h/2

−h/2

w2
z

dz

h
. (4.1)

The inequality (4.1) requires only that w is continuous and wz is square integrable.
Using (4.1) we obtain

〈|w|Cz〉 � ω1

∫ h/2

−h/2

√
h2

4
− z2 Cz

dz

h
, (4.2)

where ω1 ≡
√

〈w2
z〉. Evaluating the integral in (4.2) using C in (3.2) gives

〈|w|Cz〉 � 2ω1

I1(m/2)

sinh(m/2)
, (4.3)

where I1 is the modified Bessel function and m ≡ µh.
Inserting (3.3) and (4.3) into (2.8) gives an inequality valid for all κ and all m:

χ <
2κ

h2

[
m coth

(
m

2

)
+ m tanh

(
m

4

)
+

ω1h
2

κ

I1(m/2)

sinh(m/2)

]
. (4.4)

If κ/h2ω1 � 1 then the terms in square brackets on the right-hand side of (4.4),
viewed as a function of m, achieves its minimum value at m = O(κ/ω1h

2)−2/3. In this
case one can use asymptotic simplifications to compute the minimum value so that
finally

χ < 5.162 × κ1/3ω
2/3
1 h−2/3 (κ/ω1h

2 � 1) . (4.5)

Since the bound is O(κ1/3) this is weaker than our earlier O(κ1/2) estimates.
Now we can rewrite (4.5) in a more useful form by invoking the inequality〈

w2
z

〉
� 1

4
〈‖∇u‖2〉 (4.6)

(Doering & Constantin 1994), where ‖∇u‖2 = u2
x + u2

y + · · · + w2
z is the deformation

rate. Since the energy dissipation per unit mass is ε ≡ ν〈‖∇u‖2〉, where ν is the
viscosity, we can write (4.5) in the form

χ � 3.252 ×
(

κε

νh2

)1/3

. (4.7)

Thus the scalar cascade rate is bounded in terms of the mechanical energy dissipation
rate and the Prandtl number, Pr = ν/κ . We can conclude that χ goes to zero with
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κ1/3 only if ε and ν are fixed. But, if ε is finite and Pr is fixed as κ → 0, we can only
conclude that χ is bounded from above by a constant.

Finally, for the Rayleigh–Bénard configuration, we note that the total flux of T

through the layer, F , is given by the average of −κTz(x, y, ±h/2, t) over x, y and t .
It follows from (2.1) that F = −hχ/2. Hence, all of the bounds on χ in §§ 3 and 4
also apply to the flux. In particular, if χ → as κ → 0, we conclude that the flux of
the scalar into the fluid must likewise vanish. In fact, it is this diffusive limitation of
the supply of the scalar at large scales that constrains the cascade.

5. Conclusion
We have placed upper bounds on the scalar cascade rate, χ , in the advection–

diffusion problem posed by Zeldovich in 1937. The bounds prove that χ → 0 as
κ → 0 for a fixed velocity field, which is contrary to the requirements of the scaling
theories of Obukhov, Corrsin and Batchelor. Zeldovich’s problem runs counter to
these theories because, in the closed vessel, molecular diffusion plays a dual role:
κ provides the dissipation at the end of the cascade, but κ is also responsible for
‘lifting’ T off the walls. Thus, as κ → 0, the scalar cannot diffuse away from the
boundaries sufficiently quickly to provide a non-zero source of variance; the cascade
is diffusion-limited. Many problems discussed previously for passive scalar turbulence
escape this predicament since the scalar is introduced by either a volume source, or
by advecting the scalar into the domain with fluid inflow (the system is not closed). In
our closed system we can also avoid a diffusively limited cascade if the velocity field
is not independent of κ in the limit. This is possible if T is an active scalar (such as
temperature), or if the Prandtl number is fixed. In those situations, our bound in (4.7)
on χ is weaker, so that if the mechanical energy dissipation rate, ε, remains finite in
the limit κ → 0, then we can only prove that χ is bounded from above by a constant.
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Collaborations in Mathematical Geosciences initiative (grant number ATM0222109
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Appendix. The background method
Tighter bounds on χ can be constructed using the Constantin–Doering–Hopf

method for the background field (Doering & Constantin 1994). This approach avoids
the crudest part of the comparison-function method, namely the replacement of T

with its maximal value in 〈T u · ∇C〉. Let

T (x, y, z, t) = T(x, y, z) + θ (x, y, z, t) , (A 1)

where the time-independent ‘background field’, T, satisfies the same boundary
conditions as T and the unsteady remainder, θ , has homogeneous boundary
conditions. Putting (A 1) into (1.1) gives an inhomogeneous advection–diffusion
equation for θ(x, t) from which one can obtain the ‘power integral’:

κ〈|∇θ |2〉 + 〈θu · ∇T〉 − κ〈θ∇2T〉 = 0 . (A 2)

Also in terms of T and θ , the entropy-production functional is

χ[θ] = κ〈|∇T|2〉 − 2κ〈θ∇2T〉 + κ〈|∇θ |2〉. (A 3)

To find an upper bound on χ , we recast the problem as a variational one and
search through the set of functions which satisfy the power integral (A 2) and the



Diffusion-limited cascades 99

homogeneous boundary conditions (this set contains the actual solution and, of course,
many other functions). We search systematically by considering the functional,

F[θ] = χ[θ] − b[κ〈|∇θ |2〉 + 〈θu · ∇T〉 − κ〈θ∇2T〉] , (A 4)

where b is a Lagrange multiplier which enforces the power-integral constraint. Thus,
if θ∗ denotes the function that extremizes F, it must satisfy the Euler–Lagrange
equation obtained by functional differentiation of (A 4):

∇2θ∗ =
b

2κ(b − 1)
u · ∇T − (b − 2)

2(b − 1)
∇2T . (A 5)

It follows from (A 5) that

〈|∇θ∗|2〉 = − b

2κ(b − 1)
〈θ∗u · ∇T〉 +

b − 2

2(b − 1)
〈θ∗∇2T〉 . (A 6)

Now we decompose θ into the optimal field plus a deviation: θ = θ∗ + θ̂ . Using
(A 5) and (A 6), the functional (A 4) can then be written in the compact form

F[θ∗ + θ̂] = κ〈|∇T|2〉 + κ(b − 1)〈|∇θ∗|2〉 − κ(b − 1)〈|∇θ̂ |2〉. (A 7)

In other words, provided b > 1,

χ = F[θ∗ + θ̂ ] � F[θ∗] = κ〈|∇T|2〉 + κ(b − 1)〈|∇θ∗|2〉 . (A 8)

This shows that the functional F, evaluated at a solution of the Euler–Lagrange
equation (A 5), is an upper bound on the entropy production, χ . One can now adopt
a specific u, select a background field, T, and solve (A 5) for θ∗. The strongest upper
bound on χ is then given by optimizing F[θ∗] with respect to b, and any further
parameters in T.

We can execute this program using the flow field (3.1) from § 3. We take the
background field, T, to be the comparison function in (3.2). We solve the Euler–
Lagrange equation (A 5) exactly and we discover that the optimal choice is b = 2.
The optimal solution is

θ∗ = 2π
φ cos(X/h)m2

κΛ sinh(m/2)

[
sinh(m/2) cosh(z/h)

cosh(1/2)

− sinh(mz/h) sin(πz/h) − m2 − π2 − 1

2πm
cosh(mz/h) cos(πz/h)

]
, (A 9)

where m ≡ µh and Λ(m) ≡ (m2 + π2)2 + 1 − 2m2 + 2π2. Then, after some algebra,

χ �
κm(m + sinhm)

h2(coshm − 1)
+

2φ2π2m3

κh2Λ(coshm − 1)

{
sinh(m/2)

cosh(1/2)

[
cosh(m + 1)/2

π2 + (m + 1)2

+
cosh(m − 1)/2

π2 + (m − 1)2

]
− sinhm

4(m2 + π2)
− m2 − π2 − 1

8π2m

[
1 +

π2 sinhm

m(m2 + π2)

]}
. (A 10)

The final step is to minimize the right-hand side of (A 10) by finding the optimal
value of m for each κ . The resulting bound is shown as the solid curve in figure 3.
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